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ABSTRACT

A new design technique for CT filters has
been derived commencing from the well-
known Chebyshev all-pole prototype filter.
One or more finite frequency poles may be
introduced by cross coupling across sets of
three nodes, and the filter re-matched by
approximate compensation of the element
values. Any general optimizer may then be
used to obtain a nearly perfect  result
without undue concern over convergence
failures. The method may be combined with
a similar previous theory for CQ sections.

Introduction. This paper relates to the
design of filters having cascaded triplet (CT)
or cascaded quadruplet (CQ) sections which
are relatively simple to tune compared with
filters having “nested” cross-couplings.  The
latter may have more optimal characteristics
but are typically much more difficult to align
and tune. Exact design theories using
classical synthesis are available [1-3], but
recently there has been interest in design
techniques based on optimization [4,5].  If
optimization is to be used it is preferable to
commence from a design, which is as close
as possible to the final result, i.e., an
approximate theory is desirable. This is
available in the case of filters having CQ
sections [5] but not for CT sections. It is
surprising that the exact design theory of CT
sections has preceded the approximate one
given in this paper.

Although in many cases it is possible to
optimize a design starting from the correct

topology but with arbitrarily assigned
element values, such methods may not
always converge, especially for high-degree
filters.  Thus the objective function given in
[4] does not apply in the case of CQ sections
producing real axis transmission zeros used
in linear-phase filters. Usually it is
preferable to commence from a close
approximate design, which is almost
certainly guaranteed to converge using any
standard optimizer.

In addition the existence of an
approximate design may be considered to be
of academic interest as well as having
practical engineering value.  The question of
why optimization should be used when exact
synthesis is available is also pertinent, but
synthesis may not always be simple or
readily available, e.g. for diplexers and other
complex structures, and many engineers
would prefer to use more commonly used
procedures.

Theory of Cascaded CT Sections. The
theory commences from the standard all-
pole Chebyshev low-pass prototype filter
shown in Fig. 1. This is converted into a
band pass filter with band edges ω1 and ω2,
and normalized mid band frequency

ω0     =  √  ( ω1ω2) (1)
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Fig. 1.  Lowpass prototype filter.
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The admittance inverters may be realized as
standard Pi sections of capacitors or
inductors [6], but there is a third possibility
shown in Fig. 2, which is to use a Pi of
parallel LC sections [7,8]. This introduces a
pole at

ωp      =   1/ √ (LC) (2)
and is the basis of the theory. Other ideal
admittance inverters are realized as standard
inductive or capacitive Pi sections, and the
negative shunt circuit elements absorbed
into the adjacent main positive shunt
elements. The resulting LC circuit may then
be converted into one having a CT section
using the formulas given in [3]. The
procedure guarantees that the pole is
produced at the correct frequency, and that
the return loss is correct at mid band.
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Fig. 2.  Pole-producing admittance inverter.

Examples. The theory will be illustrated
by design of 6-section filters having two
coincident poles. The lumped element
circuit is shown in Fig. 3., and was derived
from the prototype of Fig. 1 using three
inductive and two pole-producing pi
inverters.  This topology is appropriate for
eventual conversion into a combline filter
using Richards’ transformation and well-
known close approximation techniques. The
ripple level is 20 dB return loss, and the
return loss bandwidth is 5%. Frequencies are
normalized to mid band with band edges at
0.975 and 1.025. The two examples are for
poles located at 0.90 and 0.95 respectively,
and the comparison between the exact and
approximate theories are given in Tables I
(a) and I (b). The maximum errors for the
element values are approximately 2% for the
pole at 0.90 and 7.7% for that at 0.95.  Such

relatively small error is the reason for the
suitability of the method for optimization.

Analysis of the case with the pole at 0.9
showed a return loss of better than 11 dB,
and the bandwidth shifted slightly higher in
frequency. The analysis for the more severe
case with the pole at 0.95, which is much
closer to the passband edge, is shown in
Fig. 4. Here the return loss has degraded to a
worst level of 6.5 dB and the frequency shift
has increased.

In both cases the filter optimized within
a few seconds using a standard gradient-
based optimizer, here “Touchstone”. The
optimized result for the pole at 0.95 is
shown in Fig. 5. The six return loss poles are
well resolved, and the 20 dB return loss
level is produced quite closely. The result
was obtained by retaining the element values
of the pole-producing sections, so that the
final set of element values differ slightly
from those of the exact synthesis.

If a CQ section is desired then the
method of [9] is used.  Hence filters with
mixed CQ and CT sections become feasible,
including those where the CQ section
produces real axis poles needed for linear
phase applications.

Conclusions.  A new theory for the
design of CT filters based on derivation of
specific design equations and the element
values of the standard Chebyshev all-pole
lowpass filter has been described. If the
finite attenuation poles are relatively far
from the passband then the theory may be
quite accurate, but optimization is usually
required, and convergence is practically
guaranteed since the starting condition is
sufficiently close to the final ideal result.
The new results complement an earlier result
obtained for CQ filters [6], and both CT and
CQ sections may be incorporated within a
filter design.
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Fig. 3.  N=6 filter with two coincident poles.  These may be converted into CT sections using matrix operations
which removes capacitor 2-3 and introduces one across 1-3, with a  similar operation to remove 4-5 and introduce
4-6.

Table I.  Comparison Between Exact and Approximate Element Values for 6-Section Filters having Pole Pairs
at Coincident Frequencies., (a) Poles at 0.90, (b) Poles at 0.95.  (See Fig. 3 for Circuit Topology).

EXACT APPROXIMATE
CAPACITANCE INDUCTANCE CAPACITANCE INDUCTANCE

C1,L1 19.9182 0.0523 19.9096 0.0525
L12 - 1.2039 - 1.1912

C2,L2 16.753 0.0611 16.7069 0.0607
C23,L23 3.2628 0.3784 3.2027 0.3855
C3,L3 16.7431 0.0600 16.7069 0.0598
L34 - 1.7595 - 1.7213

C4,L4 16.7431 0.0600 16.7069 0.0598
C45,L45 3.2628 0.3784 3.2027 0.3855
C5,L5 16.753 0.0611 16.7069 0.0607
L56 - 1.2039 - 1.1912

C6,L6 19.9182 0.0523 19.9096 0.0525
(a)

EXACT APPROXIMATE
CAPACITANCE INDUCTANCE CAPACITANCE INDUCTANCE

C1,L1 19.9201 0.0522 19.9096 0.0525
L12 - 1.2561 - 1.1913

C2,L2 13.4006 0.0775 13.6684 0.0745
C23,L23 6.7210 0.1649 6.2411 0.1775
C3,L3 13.3768 0.0757 13.6684 0.0731
L34 - 1.9175 - 1.7213

C4,L4 13.3768 0.0757 13.6684 0.0731
C45,L45 6.7210 0.1649 6.2411 0.1775
C5,L5 13.4006 0.0775 13.6684 0.0745
L56 - 1.2561 - 1.1913

C6,L6 19.9201 0.0522 19.9096 0.0525
(b)
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SIMULATED FILTER RESPONSE
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SIMULATED FILTER RESPONSE

-100
-90
-80
-70
-60
-50
-40
-30
-20
-10

0

0.85 0.9 0.95 1 1.05 1.1

NORMALIZED FREQUENCY

M
A

G
 S

11
 &

 M
A

G
 S

12

MAG S12
MAG S11

Fig. 4.  Results for the approximate design.              Fig. 5.  Design after optimization.
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